The difficulties the theory of evolution is unable to overcome with regard to the development of a single protein are not limited to those we have recounted so far. It is not enough for amino acids to be arranged in the correct numbers, sequences, and required three-dimensional structures. The formation of a protein also requires that amino acid molecules with more than one arm be linked to each other only in certain ways. Such a bond is called a "peptide bond." Amino acids can make different bonds with each other; but proteins are made up of those—and only those—amino acids which are joined by peptide bonds.
A comparison will clarify this point. Suppose that all the parts of a car were complete and correctly assembled, with the sole exception that one of the wheels was fastened in place not with the usual nuts and bolts, but with a piece of wire, in such a way that its hub faced the ground. It would be impossible for such a car to move even the shortest distance, no matter how complex its technology or how powerful its engine. At first glance, everything would seem to be in the right place, but the faulty attachment of even one wheel would make the entire car useless. In the same way, in a protein molecule the joining of even one amino acid to another with a bond other than a peptide bond would make the entire molecule useless.
Research has shown that amino acids combining at random combine with a peptide bond only 50 percent of the time, and that the rest of the time different bonds that are not present in proteins emerge. To function properly, each amino acid making up a protein must be joined to others only with a peptide bond, in the same way that it likewise must be chosen only from among left-handed forms.
A Protein Cannot Form Even if All the Necessary Conditions Were Present
Since some people are unable to take a broad view of these matters, but approach them from a superficial viewpoint and assume protein formation to be a simple chemical reaction, they may make unrealistic deductions such as "amino acids combine by way of reaction and then form proteins." However, accidental chemical reactions taking place in a nonliving structure can only bring about simple compounds. The number of these is predetermined and limited. For a somewhat more complex chemical material, huge factories, chemical plants, and laboratories have to be involved. Medicines and many other chemical materials that we use in our daily life are made in just this way. Proteins have much more complex structures than these chemicals produced by industry. Therefore, it is impossible for proteins, each of which is a wonder of creation and engineering, in which every part takes its place in a fixed order, to originate as a result of haphazard chemical reactions.
To summarize the subject of proteins;
• Around 100 special proteins are needed for a single protein to form.
• Protein cannot form if even one of these enzymes (proteins) required for protein synthesis is missing.
• It is not enough for these 100 enzymes to be present at the same time; they must all also be present in a special region inside the cell (a specific region inside the nucleus).
• DNA manufactures the enzymes necessary for protein to form. Proteins are also needed for DNA replication. There is no possibility of one appearing before the other. Both have to be present at the same time.
• A ribosome that serves as a factory for protein formation must also exist. But the ribosome is itself made up of proteins. Therefore, proteins are needed for ribosomes to exist, and ribosomes are needed for proteins.
• It is impossible for one to form before the other. Proteins, DNA, the ribosome, the cell nucleus, mitochondria that produce energy and all the other organelles in the cell must all exist at one and the same time.
• The enzymes essential for protein to form have to be sent to the region where manufacture will be carried out by the cell. Even if enzymes are present, so long as they are not given tasks to perform by the cell they will do nothing for that protein.
• There have to be a specific temperature and pH value in order for enzymes to be able to carry out reactions. Enzymes do not initiate reactions if they are not at the right temperature and pH level.
• Therefore, it is impossible for a protein to emerge so long as all the organelles of the cell do not co-exist together.
• Even if we place all the components necessary for protein in some muddy water, these components can never combine together to constitute proteins. The existence of the cell is a prerequisite for that to happen.
• Amino acids do not normally react with one another. Helper enzymes to carry out a reaction have to be ready and present inside the cell. But they do naturally enter into reactions with various substances, such as sugar. Therefore, even if all the requisite amino acids are placed into muddy water they can still never combine spontaneously with other amino acids. The cell is again essential for that to happen.
• Under natural conditions, even if a protein is left inside muddy water, that protein will immediately be broken down, under the effect of various environmental factors, or else will combine with other acids, amino acids or chemical substances and lose all its properties and turn into another substance that serves no purpose.
• In addition to all this, it will be useful to reiterate the essential conditions for a protein:
a. There must be peptide bonds between amino acids
b. All amino acids must be left-handed
c. Only 20 amino acids must be used
d. Amino acids have to be in a specific sequence
e. The protein that forms has to have a specific 3-D shape.
Let us for a minute put aside all the impossibilities we have described so far, and suppose that a useful protein molecule still evolved spontaneously "by accident." Even so, the theory of evolution again has no answers, because in order for this protein to survive, it would need to be isolated from its natural habitat and be protected under very special conditions. Otherwise, it would either disintegrate from exposure to natural conditions on earth, or else join with other acids, amino acids, or chemical compounds, thereby losing its particular properties and turning into a totally different and useless substance.
What we have been discussing so far is the impossibility of just one protein's coming about by chance. However, in the human body alone there are some 100,000 proteins functioning. Furthermore, there are about 1.5 million species named, and another 10 million are believed to exist. Although many similar proteins are used in many life forms, it is estimated that there must be 100 million or more types of protein in the plant and animal worlds. And the millions of species which have already become extinct are not included in this calculation. In other words, hundreds of millions of protein codes have existed in the world. If one considers that not even one protein can be explained by chance, it is clear what the existence of hundreds of millions of different proteins must mean.
Bearing this truth in mind, it can clearly be understood that "coincidences" cannot account for the origin of living things.
Hiç yorum yok:
Yorum Gönder